Impact of cagPAI and T4SS on the Inflammatory Response of Human Neutrophils to Helicobacter pylori Infection

نویسندگان

  • Norma Angélica Sánchez-Zauco
  • Javier Torres
  • Gloria Erandi Pérez-Figueroa
  • Lourdes Álvarez-Arellano
  • Margarita Camorlinga-Ponce
  • Alejandro Gómez
  • Silvia Giono-Cerezo
  • Carmen Maldonado-Bernal
چکیده

Helicobacter pylori contains a pathogenicity island, cagPAI, with genes homologous to components of the type IV secretion system (T4SS) of Agrobacterium tumefaciens. The T4SS components assemble a structure that transfers CagA protein and peptidoglycan into host epithelial cells, causing the increased release of interleukin 8 (IL8) from the cells. The Toll-like receptors on neutrophils recognize H. pylori, initiating signaling pathways that enhance the activation of NF-κB. However, the roles of cagPAI and T4SS in the inflammatory response of neutrophils are unknown. We evaluated the participation of cagPAI and T4SS in the response of human neutrophils to H. pylori infection. Neutrophils were isolated from the blood of healthy donors and infected with H. pylori cagPAI(+), cagPAI(-), and cagPAI mutant strains virB4 (-) and virD4 (-). Whereas cagPAI(+) strain 26695 induced the greatest IL8 production, a proinflammatory response, cagPAI(-) strain 8822 induced the greatest IL10 production, an anti-inflammatory response. In contrast, the virB4 (-) and virD4 (-) mutant strains produced significantly more of the two proinflammatory cytokines IL1β and tumor necrosis factor αthan the cagPAI(+) strain 26695. We observed that H. pylori downregulated the expression of TLRs 2 and 5 but upregulated TLR9 expression in a cagPAI and T4SS-independent manner. These results show for the first time that the response of human neutrophils to H. pylori may vary from a pro-inflammatory to an anti-inflammatory response, depending on cagPAI and the integrity of T4SS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Plasticity in the Type IV Secretion System of Helicobacter pylori

Helicobacter pylori causes clinical disease primarily in those individuals infected with a strain that carries the cytotoxin associated gene pathogenicity island (cagPAI). The cagPAI encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into epithelial cells and is required for induction of the pro-inflammatory cytokine, interleukin-8 (IL-8). CagY is an essential component...

متن کامل

Correction: Induction of TLR-2 and TLR-5 Expression by Helicobacter pylori Switches cagPAI-Dependent Signalling Leading to the Secretion of IL-8 and TNF-α

Helicobacter pylori is the causative agent for developing gastritis, gastric ulcer, and even gastric cancer. Virulent strains carry the cag pathogenicity island (cagPAI) encoding a type-IV secretion system (T4SS) for injecting the CagA protein. However, mechanisms of sensing this pathogen through Toll-like receptors (TLRs) and downstream signalling pathways in the development of different patho...

متن کامل

Pathogenic interactions between Helicobacter pylori adhesion protein HopQ and human cell surface adhesion molecules CEACAMs in gastric epithelial cells

Objective(s): The present paper aims to review the studies describing the interactions between HopQ and CEACAMs along with possible mechanisms responsible for pathogenicity of Helicobacter pylori.Materials and Methods: The literature was searched on “PubMed” using different key words including Helicobacter pylori, CEACAM and gastric.<br ...

متن کامل

A novel basolateral type IV secretion model for the CagA oncoprotein of Helicobacter pylori

Intercellular junctions are crucial structural elements for the formation and maintenance of epithelial barrier functions to control homeostasis or protect against intruding pathogens in humans. Alterations in these complexes represent key events in the development and progression of numerous cancers as well as multiple infectious diseases. Many bacterial pathogens harbor type IV secretion syst...

متن کامل

Nucleotide Binding Oligomerization Domain 1 Is an Essential Signal Transducer in Human Epithelial Cells Infected with Helicobacter pylori That Induces the Transepithelial Migration of Neutrophils

BACKGROUND/AIMS The cytosolic host protein nucleotide binding oligomerization domain 1 (Nod1) has emerged as a key pathogen recognition molecule for innate immune responses in epithelial cells. The purpose of the study was to elucidate the mechanism by which Helicobacter pylori infection leads to transepithelial neutrophil migration in a Nod1-mediated manner. METHODS Human epithelial cell lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013